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Abstract: Two privileged drug scaffolds have been hybridized to create
the novel heteromorphic nucleoside 5-(2-amino-3-cyano-5-oxo-5,6,7,8-
tetrahydro-4H-chromen-4-yl)-1-(2-deoxypentofuranosyl)pyrimidine-2,4-
(1H,3H)-dione (2). Compound2 inhibited the replication of two
orthopoxviruses, vaccinia virus (VV) (EC50 ) 4.6 ( 2.0 µM), and
cowpox virus (CV) (EC50 ) 2.0 ( 0.3 µM). Compound2 exhibited
reduced activity against a thymidine kinase (TK) negative strain of
CV, implying a requirement for 5′-monophosphorylation for antior-
thopoxvirus activity. Compound2 was efficiently phosphorylated by
VV TK, establishing that VV TK is more promiscuous than previously
believed.

Smallpox, although declared eradicated as a natural disease
in 1983 by the World Health Organization, now stands as the
most potentially devastating of all bioterrorist threats.1,2 It is
presently the policy of the U.S. Government to provide two
FDA-approved drugs for the treatment of smallpox and to have
two others in the pipeline, ideally with different modes of
action.3 One drug, cidofovir (Vistide), licensed to treat cytome-
galovirus (CMV) retinitis in HIV-infected patients, is available
through a special protocol (Investigational New Drug, IND) for
emergency treatment of smallpox or vaccine reactions (http://
www.bt.cdc.gov/agent/smallpox/vaccination/cidofovir.asp) if vac-
cinia immune globulin (VIG, in limited supply) is not effec-
tive.4,5 Progress has been made on development of oral dosage
forms of cidofovir,6-10 but these are not yet available in the
clinic. Some agents for the treatment of orthopoxvirus infections
are in preclinical or clinical development. These include
inhibitors of viral morphogenesis (TTP-6171)11 and viral release
(ST-246)12 as well as cellular (i.e., Erb-1 kinase inhibitors, CI-
1033)13,14 and tyrosine kinase inhibitors (Gleveec, STI-571).15

Nonetheless, there presently is no drug approved by the FDA
to treat smallpox.

We have pursued a chemistry-driven strategy for the discov-
ery of lead molecules with anti-orthopoxvirus activity.16,17Our
approach to new orthopoxvirus antivirals has been guided by
the following considerations: (a) since the “privileged”18,19

structure of nucleosides has led to a variety of efficacious

antiviral agents,20 the nucleoside scaffold is an excellent point
of departure in the search for new antiviral drugs; (b) other
privileged18,19 molecular scaffolds exist that have spawned a
significant number of drugs and other biologically active agents,
and these also can be used to discover molecular “masterkeys”;21

(c) 5-formyl-2′-deoxyuridine is a neglected but powerful synthon
for the generation of novel nucleoside structures that can be
employed in multicomponent reactions22-25 (MCR) to generate
chemical diversity.

In this study, a modified benzofuran-nucleoside chimera was
generated in a MCR originating with 5-formyl-2′-deoxy-
uridine.26-28 Benzofuran congeners form the nucleus of many
biological active molecules.29-32 Singh et al.33 gained entry to
these fused pyrans by reactions of 1,3-oxazinanes and oxazo-
lidines with various carbon nucleophiles. We adapted this to
the reaction of 5-formyl-2′-deoxyuridine with malononitrile and
1,3-cyclohexanedione to obtain a novel nucleoside. The syn-
thesis was carried out using 5-formyl-2′-deoxyuridine26-28 in a
multicomponent reaction with malononitrile and 1,3-cyclohex-
anedione in EtOH to give 5-(2-amino-3-cyano-5-oxo-5,6,7,8-
tetrahydro-4H-chromen-4-yl)-1-(2-deoxypentofuranosyl)pyrim-
idine-2,4(1H,3H)-dione (2) (Scheme 1). Compound2 was
obtained as a 1:1 diastereomeric mixture arising from the
generation of a chiral carbon at position 4 of the chromone
ring.

The antiviral activities of2 (Table 1) were determined in
human foreskin fibroblast cells, and the challenge orthopoxvi-
ruses were vaccinia virus (VV) or cowpox virus (CV). An initial
evaluation was performed using the viral cytopathogenic effect
as the endpoint. A second confirmatory assay involved plaque
reduction. The concentration of agent that inhibited viral CPE
or plaque formation by 50% was defined as the EC50. The effect
of the potential antiviral agent on uninfected host cell viability
was ascertained by Neutral Red uptake as a measure of cellular
cytotoxicity. The concentration that reduced Neutral Red uptake
by 50% was defined as the CC50. Compound2 had no significant
cytopathic effect on uninfected cells under these conditions
(CC50 > 300 µM).

Compound2 was also evaluated against a thymidine kinase
(TK) deficient strain (TK:GFP lacZ) of CV. CDV does not
require phosphorylation to be active because it is a monophos-
phate analogue.4,5,39,40Therefore, its activity is quite similar in
TK+ and TK- virus strains. 5-Iodo-2′-deoxyuridine (idoxuridine)
is known to be activated by the viral TK41 such that it is much
less effective against TK- viruses.

The data of Table 1 clearly show that2 is active only against
the TK+ strain of CV, suggesting a specific 5′-monophospho-
rylation of this compound by the virus enzyme. That2 indeed
is a substrate for VV TK was confirmed by in vitro assays with
recombinant VV TK. Under conditions wherein thymidine itself
possessed aKm of 49 ( 7.6µM and aVmax of 289( 137µmol
min-1 mg-1, 2 was found to have aKm of 43 ( 1.4 µM and a
Vmax of 77 ( 5 µmol min-1 mg-1. Thus,2 is a good substrate
and is efficiently phosphorylated by the enzyme.

These results have several important consequences for
orthopoxvirus antiviral discovery and development. First, the
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requirement for the poxvirus TK for antiviral activity attests
that 2 can be expected (as so far suggested by the cell culture
studies of Table 1) to be of minimal toxicity to uninfected cells.
Second, these foregoing data also imply that the orthopoxvirus
TK (as embodied by the VV and CV genomes) may not exhibit
the extremely limited substrate specificity characteristic of other
type II highly discriminating TKs. VV TK originally was
classified as a type II TK because of its substrate specificity,
sequence homology to other type II kinases, and tetrameric
configuration.42-46 To date, the only published recognized
substrates for VV TK are thymidine, 2′-deoxyuridine, and
5-bromo-2′-deoxyuridine. The data reported here with2 signify
that, as for the herpes virus TKs, orthopoxvirus TKs are more
promiscuous kinases than the cellular homologues, thereby
providing fertile terrain for more diverse structure interrogation
for candidate antiorthopoxvirus agents. Third, the unique
structure of2 suggests the possibility of a novel mode of action.
Last, the recruitment of the versatile 5-formyl-2′-deoxyuridine
and the adoption of the multicomponent reaction strategy
provide access to an uncharted domain of structural diversity
for exploration in antiviral drug discovery.
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Scheme 1.Synthesis of Compound2

Table 1. Antiorthopoxvirus Activitiesa

efficacy (EC50,c µM)

compd VVb CPE VVb PR CPVd TK+ lacZ CPVb PR CPVd TK- lacZ
toxicity (CC50,e µM)
Neutral Red uptake

cidofovir 3.2 24( 12 3.3( 1.1 40( 6.1 5.2( 3.9 >317( 0
2 0.6 4.6( 2.0 0.8( 0.1 2.0( 0.3 28( 2.7 >300( 0
5-iodo-2′-deoxyuridine 6.0( 0.2 0.4( 0.1 2.0( 0.2 27( 3 >260a

a Procedures adapted from Kern et al.34 Assays were performed according to the procedures described previously35-37 for activity against VV and CV and
for cytotoxicity (Neutral Red uptake assay) in human foreskin fibroblast (HFF) cells. Briefly, to determine efficacy, initial cytopathogenic effect (CPE)
assays were performed in 96-well plates seeded with HFF cells. Varying concentrations of drug were added to monolayers of HFF cells and challenged with
VV or CV at 1000 PFU per well (incubation at 37°C for 7 days). Confirmatory assays involving plaque reduction (PR) assays were performed using HFF
cells seeded in six-well plates 2 days prior to use and infected with VV or CV by the addition of 20-30 PFU per well. Plates were incubated for 1 h. Various
concentrations of drug were then added to triplicate wells, and plates were incubated at 37°C for 3 days. Toxicity was evaluated using uninfected HFF cells
seeded in 96-well plates incubated with various concentrations of drug for 7 days at 37°C. b Virus used for challenge: VV (Copenhagen) or CV (Brighton).
c Values are the mean( standard deviation of two or more assays.d CV strainsδ crmA (TK+) and TK:GFP lacZ (TK-) were obtained from Pete Turner
(University of Florida, Gainesville, FL) and were described previously.38 Values were obtained using aâ-galactosidase assay to determine antiviral activity.
e CC50: concentration that causes a cytotoxic effect (as ascertained by Neutral Red uptake) on 50% of uninfected cells.
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